A learning rule of neural networks via simultaneous perturbation and its hardware implementation

نویسندگان

  • Yutaka Maeda
  • Hiroaki Hirano
  • Yakichi Kanata
چکیده

-This paper describes a learning rule of neural networks via a simultaneous perturbation and an analog feedforward neural network circuit using the learning rule. The learning rule used here is a stochastic gradient-like algorithm via a simultaneous perturbation. The learning rule requires only forward operations o f the neural network. Therefore, it is suitable for hardware implementation. First, we state the learning rule and show some computer simulation results o f the learning rule. A comparison between the learning rule, the usual back-propagation method, and a learning rule by a difference approximation is considered through the exclusive-OR problem and a simple pattern recognition problem known as the TCLX problem. Moreover, 26 alphabetical characters' recognition is handled to confirm a feasibility of the learning rule for large neural networks. Next, we describe details of the fabricated neural network circuit with learning ability. The exclusive-OR problem and the TCLX problem are considered. In a fabricated analog neural network circuit, input, output, and weights are realized by voltages. Keywords--Analog feedforward neural network circuit, Simultaneous perturbation, Learning rule, Hardware implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse Density Hopfield Neural Network System with Learning Capability Using FPGA

In this paper, we present a FPGA Hopfield Neural Network system with learning capability using the simultaneous perturbation learning rule. In the neural network, outputs and internal values are represented by pulse train. That is, analog Hopfield Neural Network with pulse frequency representation is considered. The pulse density representation and the simultaneous perturbation enable the syste...

متن کامل

FPGA implementation of a pulse density neural network with learning ability using simultaneous perturbation

Hardware realization is very important when considering wider applications of neural networks (NNs). In particular, hardware NNs with a learning ability are intriguing. In these networks, the learning scheme is of much interest, with the backpropagation method being widely used. A gradient type of learning rule is not easy to realize in an electronic system, since calculation of the gradients f...

متن کامل

Pulse Density Recurrent Neural Network Systems with Learning Capability Using FPGA

In this paper, we present FPGA recurrent neural network systems with learning capability using the simultaneous perturbation learning rule. In the neural network systems, outputs and internal values are represented by pulse train. That is, analog recurrent neural networks with pulse frequency representation are considered. The pulse density representation and the simultaneous perturbation enabl...

متن کامل

An Analog Neural Network System with Learning Capability Using Simultaneous Perturbation

In this paper, we describe an implementation of analog neural network system with on-line learning capability. A learning rule using the simultaneous perturbation is adopted. Compared with usage of the ordinary back-propagation method, we can easily implement the simultaneous perturbation learning rule. The neural system can monitor weight values and an error value. The exclusive OR problem and...

متن کامل

Learning rules for neuro-controller via simultaneous perturbation

This paper describes learning rules using simultaneous perturbation for a neurocontroller that controls an unknown plant. When we apply a direct control scheme by a neural network, the neural network must learn an inverse system of the unknown plant. In this case, we must know the sensitivity function of the plant using a kind of the gradient method as a learning rule of the neural network. On ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Networks

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1995